School: Science

This unit information may be updated and amended immediately prior to semester. To ensure you have the correct outline, please check it again at the beginning of semester.

  • Unit Title

    Advanced Physics
  • Unit Code

    SCP3318
  • Year

    2025
  • Enrolment Period

    1
  • Version

    3
  • Credit Points

    15
  • Full Year Unit

    N
  • Mode of Delivery

    On Campus
  • Unit Coordinator

    A/Prof Steven HINCKLEY

Description

This unit covers a selection of advanced topics in physics, which may include quantum physics, solid state physics, experimental techniques, relativity, nuclear physics, particle physics, optics and photonics, environmental physics, astrophysics, computational physics, history and philosophy, innovation and ethics.

Prerequisite Rule

Students must pass 1 unit from (SCP2343 and SCP2211) AND 2 Units from (SCP1111, SCP1112, SCC1111) AND MAT1250

For Physics major students (MAEEEF in Y83 and MAAAKZ in M04) must pass SCP2211 AND MAT1250.

Equivalent Rule

Unit was previously coded SCP3314

Learning Outcomes

On completion of this unit students should be able to:

  1. Apply process and problem solving skills.
  2. Synthesise concepts regarding the nature of scientific knowledge and its historical development.
  3. Develop and perform a set of experimental and/or theoretical mini projects.
  4. Apply appropriate concepts, principles and theories in advanced physics.

Unit Content

  1. ADVANCED QUANTUM PHYSICS: Total angular momentum and many-electron atoms. Quantum computation, cryptography, measurement, and teleportation. Quantum devices - quantum dots, wires and wells. Nanostructures and their application in microelectronics. Microphotonics, optoelectronics and quantum optics.
  2. ASTROPHYSICS: Observational properties of stars, luminosity, magnitudes, surface temperature, stellar distance, stellar masses, spectral types, spectroscopic binary systems, chemical composition, mass-luminosity relationship, stellar formation, Hertzsprung-Russell diagram. Dynamic, thermal and nuclear time scales, equation of hydrostatic support, assumption of spherical symmetry, central pressure of a star, virial theorem, physical state of stellar matter, mean temperature, energy release and energy transport, sources of opacity, structure of stars, evolution of stellar structure. Elemental and isotropic abundances in solar systems, fusion reactions, heavy element production in s-process and r-process, explosive nucleosynthesis.
  3. COMPUTATIONAL PHYSICS: The application of computers and computer techniques to the solution of theoretical problems in physics. For example, density functional theory, WKB approximation, and perturbation theory in quantum mechanics; application of commercial software such as MATLAB, FEMLAB and Excel to problems in Physics. HISTORY AND PHILOSOPHY OF PHYSICS AND SCIENCE Science as knowledge, observation, facts, laws and theory, fallibility, experiment, induction, Popper and falsification, limitations, Kuhn's paradigms, Lakatos's methodology, Feyerabend's anarchistic account of science, realism and anti-realism, historical examples.
  4. ENVIRONMENTAL PHYSICS: Energy and the sun, interaction of light with matter, atmospheric physics, weather and climate, fossil fuels, nuclear energy, renewable energy, transport of pollutants, diffusion, flow, fluid dynamics, turbulence, spectroscopy, social and economic considerations.
  5. EXPERIMENTAL MEASUREMENT TECHNIQUES: Experimental characterisation techniques will be examined both theoretically and experimentally. These methods may include the following: X-ray diffraction, scanning and transmission electron microscopy, scanning tunneling & atomic force microscopy, surface analysis techniques, and ellipsometry. Semiconductor and photonic device characterisation techniques.
  6. INNOVATION AND ETHICS IN SCIENCE: Occupational health and safety aspects of science; intellectual property and patents; record keeping and the scientific notebook/diary; communication techniques - writing scientific articles, presenting seminars and posters; publishing and the peer review process; professional societies - their role in scientific engagement and communication; employment strategies and opportunities.
  7. NUCLEAR AND PARTICLE PHYSICS: Natural radioactivity and early discoveries, exponential decay law, half life of radioactive decay, nuclear equations, series of radioactive transformations, properties of alpha, beta and gamma emission. Artificial radioactivity, bombardment induced radiation, energy associated with nuclear reactions. Stability of nuclei, valley of stability, nuclear models, magic numbers, binding forces in nucleus, mass defect. Fission, fission products, prompt and delayed neutrons, chain reactions, transuranic elements, fusion reactions, stellar energy. Particle physics.
  8. OPTICS AND PHOTONICS: Light as waves, rays and photons, geometric optics, optical instruments, electromagnetic theory, superposition, polarization, absorption and scattering, interference, Fraunhofer and Fresnel diffraction, gratings, Fourier optics, spectrometry, coherence theory, photonics, lasers, interferometry, holography, fibre optics, communications, biomedical optical engineering.
  9. RELATIVITY: Frames of reference, Newtonian relativity, Galilean transformations, Michelson-Morley experiment, Einstein's postulates, Lorentz transformations, simultaneity, time dilation, twin paradox, length contraction, velocity addition, Doppler effect, relativistic dynamics, energy, mass, momentum, space time diagrams, General relativity.
  10. SOLID STATE PHYSICS: Structural properties, types of materials and atomic bonding. Crystal Structure, lattice and unit cells. Crystal defects and noncrystalline structure. Electrical conduction, superconductivity, band theory and semiconductors. Thermoelectric properties. Magnetic properties and materials. Optical properties of solids.

Learning Experience

Students will attend on campus classes as well as engage in learning activities through ECU's LMS

JoondalupMount LawleySouth West (Bunbury)
Semester 113 x 3 hour labNot OfferedNot Offered
Semester 113 x 1 hour seminarNot OfferedNot Offered

For more information see the Semester Timetable

Additional Learning Experience Information

Seminars, discussion sessions, self study, tutorials and laboratory sessions.

Assessment

GS1 GRADING SCHEMA 1 Used for standard coursework units

Students please note: The marks and grades received by students on assessments may be subject to further moderation. All marks and grades are to be considered provisional until endorsed by the relevant School Progression Panel.

Due to the professional competency skill development associated with this Unit, student attendance/participation within listed in-class activities and/or online activities including discussion boards is compulsory. Students failing to meet participation standards as outlined in the unit information may be awarded an I Grade (Fail - incomplete). Students who are unable to meet this requirement for medical or other reasons must seek the approval of the unit coordinator.

ON CAMPUS
TypeDescriptionValue
Assignment ^Tests and/or Assignments40%
Laboratory Work ^Laboratory and/or project work.30%
Research PaperResearch review paper and seminar30%

^ Mandatory to Pass


Disability Standards for Education (Commonwealth 2005)

For the purposes of considering a request for Reasonable Adjustments under the Disability Standards for Education (Commonwealth 2005), inherent requirements for this subject are articulated in the Unit Description, Learning Outcomes and Assessment Requirements of this entry. The University is dedicated to provide support to those with special requirements. Further details on the support for students with disabilities or medical conditions can be found at the Access and Inclusion website.

Assessment

Students please note: The marks and grades received by students on assessments may be subject to further moderation. Informal vivas may be conducted as part of an assessment task, where staff require further information to confirm the learning outcomes have been met. All marks and grades are to be considered provisional until endorsed by the relevant School Progression Panel.

Academic Integrity

Integrity is a core value at Edith Cowan University, and it is expected that ECU students complete their assessment tasks honestly and with acknowledgement of other people's work as well as any generative artificial intelligence tools that may have been used. This means that assessment tasks must be completed individually (unless it is an authorised group assessment task) and any sources used must be referenced.

Breaches of academic integrity can include:

Plagiarism

Copying the words, ideas or creative works of other people or generative artificial intelligence tools, without referencing in accordance with stated University requirements. Students need to seek approval from the Unit Coordinator within the first week of study if they intend to use some of their previous work in an assessment task (self-plagiarism).

Unauthorised collaboration (collusion)

Working with other students and submitting the same or substantially similar work or portions of work when an individual submission was required. This includes students knowingly providing others with copies of their own work to use in the same or similar assessment task(s).

Contract cheating

Organising a friend, a family member, another student or an external person or organisation (e.g. through an online website) to complete or substantially edit or refine part or all of an assessment task(s) on their behalf.

Cheating in an exam

Using or having access to unauthorised materials in an exam or test.

Serious outcomes may be imposed if a student is found to have committed one of these breaches, up to and including expulsion from the University for repeated or serious acts.

ECU's policies and more information about academic integrity can be found on the student academic integrity website.

All commencing ECU students are required to complete the Academic Integrity Module.

Assessment Extension

In some circumstances, Students may apply to their Unit Coordinator to extend the due date of their Assessment Task(s) in accordance with ECU's Assessment, Examination and Moderation Procedures - for more information visit https://askus2.ecu.edu.au/s/article/000001386.

Special Consideration

Students may apply for Special Consideration in respect of a final unit grade, where their achievement was affected by Exceptional Circumstances as set out in the Assessment, Examination and Moderation Procedures - for more information visit https://askus2.ecu.edu.au/s/article/000003318.

SCP3318|3|1