Top of page

Student/Staff Portal
Global Site Navigation

School of Science

Local Section Navigation
You are here: Main Content

Professor David Broadhurst

Professor

Staff Member Details
Telephone: +61 8 6304 2705
Mobile: 0403 707 305
Email: d.broadhurst@ecu.edu.au
Campus: Joondalup  
Room: JO19.332  
ORCID iD: https://orcid.org/0000-0003-0775-9581

David is the Professor of Data Science & Biostatistics in the School of Science.

Background

David holds a first class honours degree in Electronic Engineering, an MSc in Medical Informatics, and a PhD in the ‘‘Application of Artificial Neural Networks and Evolutionary Algorithms to Metabolic Profiling’’. He has been an active member of the Systems Biology community for over 20 years, where he has recognised expertise in design of experiments, signal processing, biostatistics, and machine learning. He started his professional career at University of Wales, Aberystwyth, witnessing the birth of Metabolomics (the quantitative study of low-molecular weight chemicals in a biological system related to genetic or environmental perturbations) as an independent post-genomic science, under the mentorship of Professor Douglas Kell C.B.E. After leaving Wales, David worked for an extended period as a post-doctoral research fellow at the University of Manchester developing large-scale clinical metabolomics protocols in collaboration with GSK and AstraZeneca. In 2009 he moved to Cork University Maternity Hospital, Ireland, to work as part of a team investigating pre-symptomatic metabolite biomarkers predictive of major pregnancy disorders. In 2011 David was appointed Associate Professor of Biostatistics at the University of Alberta, Canada, where he was scientific lead for a range of basic/clinical metabolomics projects, and continued his pregnancy related research. More recently he has expanded his research portfolio to a diverse range of post-genomic translational/precision medicine projects. In March 2016 he was appointed to his current position as Professor at Edith Cowan University. David’s current research focuses on integrative metabolomics and computational biology. With particular emphasis on multi-system/multi-omic data integration, population stratification via personalised trajectories, model optimization by evolutionary computation, artificial neural networks, and data visualisation.

Professional Associations

Director of the International Metabolomics Society.

Qualifications

  • Doctor of Philosophy, Wales, 1998.
  • Master of Science, England, 1993.
  • Bachelor of Engineering, England, 1992.

Research Outputs

Journal Articles

  • Zanetti, KA., Guo, L., Husain, D., Kelly, RS., Lasky-Su, J., Broadhurst, D., Wheelock, CE. (2024). Workshop report - interdisciplinary metabolomic epidemiology: the pathway to clinical translation. Metabolomics, 20(3), article number 60. https://doi.org/10.1007/s11306-024-02111-4.
  • Mendez, K., Begum, S., Tiwari, A., Sharma, R., Chen, Q., Kelly, RS., Prince, N., Huang, M., Kachroo, P., Chu, SH., Chen, Y., Lee-Sarwar, K., Broadhurst, D., Reinke, S., Gerszten, R., Clish, C., Avila, L., Celedón, JC., Wheelock, CE., Weiss, ST., McGeachie, M., Lasky-Su, JA. (2024). Metabolite signatures associated with microRNA miR-143-3p serve as drivers of poor lung function trajectories in childhood asthma. EBioMedicine, 102(2024), article number 105025. https://doi.org/10.1016/j.ebiom.2024.105025.

Journal Articles

  • Reinke, S., Naz, S., Chaleckis, R., Gallart-Ayala, H., Kolmert, J., Kermani, N., Tiotiu, A., Broadhurst, D., Lundqvist, A., Olsson, H., Strom, M., Wheelock, A., Gómez, C., Ericsson, M., Sousa, A., Riley, R., Bates, S., Scholfield, J., Loza, M., Baribaud, F., Bakke, P., Caruso, M., Chanez, P., Fowler, S., Geiser, T., Howarth, P., Horvath, I., Krug, N., Montuschi, P., Behndig, A., Singer, F., Musial, J., Shaw, D., Dahlén, B., Hu, S., Lasky-Su, J., Sterk, P., Fan Chung, K., Djukanovic, R., Dahlen, S., Adcock, I., Wheelock, C. (2022). Urinary metabotype of severe asthma evidences decreased carnitine metabolism independent of oral corticosteroid treatment in the U-BIOPRED study. European Respiratory Journal, 60(1), article number 2101733. https://doi.org/10.1183/13993003.01733-2021.
  • Read, J., Serralha, M., Mok, D., Holt, B., Cruickshank, M., Karpievitch, Y., Broadhurst, D., Strickland, D., Sly, P., Reinke, S., Holt, P., Bosco, A. (2022). Lipopolysaccharide-induced interferon response networks at birth are predictive of severe viral lower respiratory infections in the first year of life. Frontiers in Immunology, 13(5 August 2022), Article number 876654. https://doi.org/10.3389/fimmu.2022.876654.
  • Patel, D., Hall, G., Broadhurst, D., Smith, A., Schultz, A., Foong, R. (2022). Does machine learning have a role in the prediction of asthma in children?. Paediatric Respiratory Reviews, 41, 51-60. https://doi.org/10.1016/j.prrv.2021.06.002.
  • Belhaj, M., Lawler, N., Hawley, J., Broadhurst, D., Hoffman, N., Reinke, S. (2022). Metabolomics reveals mouse plasma metabolite responses to acute exercise and effects of disrupting AMPK-glycogen interactions. Frontiers in Molecular Biosciences, 9(2022), article number 957549. https://doi.org/10.3389/fmolb.2022.957549.

Journal Articles

  • Ralph, A., Webb, R., Moreland, N., McGregor, R., Bosco, A., Broadhurst, D., Lassmann, T., Barnett, T., Benothman, R., Yan, J., Remenyi, B., Bennett, J., Wilson, N., Mayo, M., Pearson, G., Kollmann, T., Carapetis, J. (2021). Searching for a technology-driven acute rheumatic fever test: The START study protocol. BMJ Open, 11(9), Article number e053720. https://doi.org/10.1136/bmjopen-2021-053720.
  • Lette, E., Burnham, Q., Lawler, N., Horwitz, P., Boyce, M., Broadhurst, D., Duffy, R., Koenders, A. (2021). Detecting sex-related changes to the metabolome of a critically endangered freshwater crayfish during the mating season. Frontiers in Molecular Biosciences, 8(16 April 2021), Article number 650839. https://doi.org/10.3389/fmolb.2021.650839.
  • Cai, Y., Kim, D., Takahashi, T., Broadhurst, D., Yan, H., Ma, S., Rattray, N., Casanovas-Massana, A., Israelow, B., Klein, J., Lucas, C., Mao, T., Moore, A., Muenker, C., Oh, J., Silva, J., Wong, P., Ko, A., Khan, S., Iwasaki, A., Johnson, C. (2021). Kynurenic acid may underlie sex-specific immune responses to COVID-19. Science Signaling, 14(690), Article number eabf8483. https://doi.org/10.1126/scisignal.abf8483.
  • Litton, E., Anstey, M., Broadhurst, D., Chapman, A., Currie, A., Ferrier, J., Gummer, J., Higgins, A., Lim, J., Manning, L., Myers, E., Orr, K., Palermo, A., Paparini, A., Pellicano, S., Raby, E., Rammohan, A., Regli, A., Richter, B., Salman, S., Strunk, T., Waterson, S., Weight, D., Wibrow, B., Wood, F. (2021). Early and sustained Lactobacillus plantarum probiotic therapy in critical illness: the randomised, placebo-controlled, restoration of gut microflora in critical illness trial (ROCIT). Intensive Care Medicine, 47(3), 307-315. https://doi.org/10.1007/s00134-020-06322-w.
  • Shafaei Darestani, A., Rees, J., Christophersen, C., Devine, A., Broadhurst, D., Boyce, M. (2021). Extraction and quantitative determination of bile acids in feces. Analytica Chimica Acta, 1150(15 March 2021), Article 338224. https://doi.org/10.1016/j.aca.2021.338224.
  • Shafaei Darestani, A., Vamathevan, VV., Pandohee, J., Lawler, N., Broadhurst, D., Boyce, M. (2021). Sensitive and quantitative determination of short-chain fatty acids in human serum using liquid chromatography mass spectrometry. Analytical and Bioanalytical Chemistry, 413(25), 6333-6342. https://doi.org/10.1007/s00216-021-03589-w.
  • Lasky-Su, J., Kelly, R., Wheelock, C., Broadhurst, D. (2021). A strategy for advancing for population-based scientific discovery using the metabolome: the establishment of the Metabolomics Society Metabolomic Epidemiology Task Group. Metabolomics, 17(5), Article number 45. https://doi.org/10.1007/s11306-021-01789-0.
  • O’boyle, D., Dunn, W., O'Neill, D., Kirwan, J., Broadhurst, D., Hallberg, B., Boylan, G., Murray, D. (2021). Improvement in the prediction of neonatal hypoxic-ischemic encephalopathy with the integration of umbilical cord metabolites and current clinical makers. Journal of Pediatrics, 229(February 2021), 175-181. https://doi.org/10.1016/j.jpeds.2020.09.065.

Journal Articles

  • Lette, E., Lawler, N., Burnham, Q., Boyce, M., Duffy, R., Koenders, A., Broadhurst, D. (2020). Metabolomic Profiling of Crayfish Haemolymph Distinguishes Sister Species and Sex: Implications for Conservation, Aquaculture and Physiological Studies. Freshwater Crayfish, 25(1), 89-101. https://doi.org/10.5869/fc.2020.v25-1.089.
  • Mendez, K., Broadhurst, D., Reinke, S. (2020). Migrating from partial least squares discriminant analysis to artificial neural networks: a comparison of functionally equivalent visualisation and feature contribution tools using jupyter notebooks. Metabolomics, 16(2), Article number 17. https://doi.org/10.1007/s11306-020-1640-0.
  • Litton, E., Anstey, M., Broadhurst, D., Chapman, A., Currie, A., Ferrier, J., Gummer, J., Higgins, A., Lim, J., Manning, L., Myers, E., Orr, K., Palermo, A., Paparini, A., Pellicano, S., Raby, E., Rammohan, A., Regli, A., Richter, B., Salman, S., Strunk, T., Waterson, S., Wibrow, B., Wood, F. (2020). Study protocol for the safety and efficacy of probiotic therapy on days alive and out of hospital in adult ICU patients: the multicentre, randomised, placebo-controlled Restoration Of gut microflora in Critical Illness Trial (ROCIT). BMJ Open, 10(6), Article number e035930. https://doi.org/10.1136/bmjopen-2019-035930.
  • Klåvus, A., Kokla, M., Noerman, S., Koistinen, V., Tuomainen, M., Zarei, I., Meuronen, T., Häkkinen, M., Rummukainen, S., Farizah Babu, A., Sallinen, T., Kärkkäinen, O., Paananen, J., Broadhurst, D., Brunius, C., Hanhineva, K. (2020). “Notame”: Workflow for Non-Targeted LC–MS Metabolic Profiling. Metabolites, 10(4), Article number 135. https://doi.org/10.3390/metabo10040135.
  • Evans, A., O’donovan, C., Playdon, M., Beecher, C., Beger, R., Bowden, J., Broadhurst, D., Clish, C., Dasari, S., Dunn, W., Griffin, J., Hartung, T., Hsu, P., Huan, T., Jans, J., Jones, C., Kachman, M., Kleensang, A., Lewis, M., Eugenia Monge, M., Mosley, J., Taylor, E., Tayyari, F., Theodoridis, G., Torta, F., Ubhi, B., Vuckovic, D. (2020). Dissemination and analysis of the quality assurance (QA) and quality control (QC) practices of LC–MS based untargeted metabolomics practitioners. Metabolomics, 16(10), Article number 113. https://doi.org/10.1007/s11306-020-01728-5.

Journal Articles

  • Mendez, K., Broadhurst, D., Reinke, S. (2019). The application of artificial neural networks in metabolomics: a historical perspective. Metabolomics, 15(11), Article Number 142. https://doi.org/10.1007/s11306-019-1608-0.
  • Mendez, K., Reinke, S., Broadhurst, D. (2019). A comparative evaluation of the generalised predictive ability of eight machine learning algorithms across ten clinical metabolomics data sets for binary classification. Metabolomics, 15(12), Article number: 150. https://doi.org/10.1007/s11306-019-1612-4.
  • Mendez, K., Pritchard, L., Reinke, S., Broadhurst, D. (2019). Toward collaborative open data science in metabolomics using Jupyter Notebooks and cloud computing. Metabolomics, 15(10), Article no.125. https://doi.org/10.1007/s11306-019-1588-0.
  • Denihan, NM., Kirwan, JA., Walsh, BH., Dunn, WB., Broadhurst, D., Boylan, GB., Murray, DM. (2019). Untargeted metabolomic analysis and pathway discovery in perinatal asphyxia and hypoxic-ischaemic encephalopathy. Journal of Cerebral Blood Flow and Metabolism, 39(1), 147-162. https://doi.org/10.1177/0271678X17726502.
  • Newton, R., Christophersen, C., Fairman, C., Hart, N., Taaffe, D., Broadhurst, D., Devine, A., Chee, R., Tang, C., Spry, N., Galvao, D. (2019). Does exercise impact gut microbiota composition in men receiving androgen deprivation therapy for prostate cancer? A single-blinded, two-armed, randomised controlled trial. BMJ Open, 9(4), article no. e024872. https://doi.org/10.1136/bmjopen-2018-024872.
  • Lawler, N., Abbiss, C., Gummer, J., Broadhurst, D., Govus, A., Fairchild, T., Thompson, K., Garvican-Lewis, L., Gore, C., Maker, G., Trengove, R., Peiffer, J. (2019). Characterizing the plasma metabolome during 14 days of live-high, train-low simulated altitude: A metabolomic approach. Experimental Physiology, 104(1), 81-92. https://doi.org/10.1113/EP087159.
  • Beger, R., Dunn, W., Bandukwala, A., Bethan, B., Broadhurst, D., Clish, C., Dasari, S., Derr, L., Evans, A., Fischer, S., Flynn, T., Hartung, T., Herrington, D., Higashi, R., Hsu, P., Jones, C., Kachman, M., Karuso, H., Kruppa, G., Lippa, K., Maruvada, P., Mosley, J., Ntai, I., O’donovan, C., Playdon, M., Raftery, D., Shaughnessy, D., Souza, A., Spaeder, T., Spalholz, B., Tayyari, F., Ubhi, B., Verma, M., Walk, T., Wilson, I., Witkin, K., Bearden, D., Zanetti, K. (2019). Towards quality assurance and quality control in untargeted metabolomics studies. Metabolomics, 15(1), article number 4. https://doi.org/10.1007/s11306-018-1460-7.

Journal Articles

  • Cassiède, M., Mercier, P., Shipley, P., Dueck, M., Kamravaei, S., Nair, S., Mino, J., Pei, L., Broadhurst, D., Lacy, P., Quémerais, B. (2018). Comparison of computational approaches for identification and quantification of urinary metabolites in 1H NMR spectra. Analytical Methods: advancing methods and applications, 10(18), 2129-2137. https://doi.org/10.1039/c8ay00830b.
  • Broadhurst, D., Goodacre, R., Reinke, S., Kuligowski, J., Wilson, I., Lewis, M., Dunn, W. (2018). Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics, 14(6), article no.72. https://doi.org/10.1007/s11306-018-1367-3.
  • Manaf, F., Lawler, N., Peiffer, J., Maker, G., Boyce, M., Fairchild, T., Broadhurst, D. (2018). Characterizing the plasma metabolome during and following a maximal exercise cycling test. Journal of Applied Physiology, 125(4), 1193-1203. https://doi.org/10.1152/japplphysiol.00499.2018.
  • Kirwan, J., Brennan, L., Broadhurst, D., Fiehn, O., Cascante, M., Dunn, W., Schmidt, M., Velagapudi, V. (2018). Preanalytical processing and biobanking procedures of biological samples for metabolomics research: A white paper, community perspective (for “Precision medicine and pharmacometabolomics task group”—The metabolomics society initiative). Clinical Chemistry (Washington, DC): international journal of molecular diagnostics and laboratory medicine, 64(8), 1158-1182. https://doi.org/10.1373/clinchem.2018.287045.
  • Reinke, S., Galindo-Prieto, B., Skotare, T., Broadhurst, D., Singhania, A., Horowitz, D., Djukanovic, R., Hinks, T., Geladi, P., Trygg, J., Wheelock, C. (2018). OnPLS-Based Multi-Block Data Integration: A Multivariate Approach to Interrogating Biological Interactions in Asthma. Analytical Chemistry, 90(22), 13400-13408. https://doi.org/10.1021/acs.analchem.8b03205.

Journal Articles

  • Dunn, W., Broadhurst, D., Edison, A., Guillou, C., Viant, M., Bearden, D., Beger, R. (2017). Quality assurance and quality control processes: summary of a metabolomics community questionnaire. Metabolomics, 13(5), article no.50. https://doi.org/10.1007/s11306-017-1188-9.

Journal Articles

  • Chan, A., Mercier, P., Schiller, D., Bailey, R., Robbins, S., Eurich, D., Sawyer, M., Broadhurst, D. (2016). 1H-NMR urinary metabolomic profiling for diagnosis of gastric cancer. British Journal of Cancer, 114(1), 59-62. https://doi.org/10.1038/bjc.2015.414.
  • Landi, A., Broadhurst, D., Vernon, S., Tyrrell, DL., Houghton, M. (2016). Reductions in circulating levels of IL-16, IL-7 and VEGF-A in myalgic encephalomyelitis/chronic fatigue syndrome. Cytokine, 78(2016), 27-36. https://doi.org/10.1016/j.cyto.2015.11.018.
  • Murphy, N., Khashan, A., Broadhurst, D., Gilligan, O., O''donoghue, K., Kenny, L. (2016). Perinatal determinants of D-dimer levels in a cross-sectional study of low risk pregnant women. Obstetric Medicine, 9(2), 78-82. https://doi.org/10.1177/1753495X15625547.
  • Ahearne, C., Denihan, N., Walsh, B., Reinke, S., Kenny, L., Boylan, G., Broadhurst, D., Murray, D. (2016). Early Cord Metabolite Index and Outcome in Perinatal Asphyxia and Hypoxic-Ischaemic Encephalopathy. Neonatology: foetal and neonatal research, 110(4), 296-302. https://doi.org/10.1159/000446556.
  • Currie, F., Broadhurst, D., Dunn, W., Sellick, C., Goodacre, R. (2016). Metabolomics reveals the physiological response of Pseudomonas putida KT2440 (UWC1) after pharmaceutical exposure. Molecular BioSystems, 12(4), 1367-1377. https://doi.org/10.1039/c5mb00889a.
  • Beger, RD., Dunn, W., Schmidt, M., Gross, S., Kirwan, J., Cascante, M., Brennan, L., Wishart, D., Oresic, M., Hankemeier, T., Broadhurst, D., Lane, A., Suhre, K., Kastenmuller, G., Sumner, S., Thiele, I., Fiehn, O., Kaddurah-Daouk, R. (2016). Metabolomics enables precision medicine: ‘‘A White Paper, Community Perspective’’. Metabolomics, 12(9), Article number 149. https://doi.org/10.1007/s11306-016-1094-6.

Journal Articles

  • Stanley, J., Sulek, K., Andersson, I., Davidge, S., Kenny, L., Sibley, C., Mandal , R., Wishart, D., Broadhurst, D., Baker, P. (2015). Sildenafil therapy normalizes the aberrant metabolomic profile in the comt -/- mouse model of preeclampsia/fetal growth restriction. Scientific Reports, 5(15 December), ART 18241. https://doi.org/10.1038/srep18241.
  • Denihan, N., Walsh, B., Reinke, S., Sykes, BD., Mandal, R., Wishart, D., Broadhurst, D., Boylan, G., Murray, D. (2015). The effect of haemolysis on the metabolomic profile of umbilical cord blood. Clinical Biochemistry, 48(7-8), 534-537. https://doi.org/10.1016/j.clinbiochem.2015.02.004.
  • Murphy, N., Broadhurst, D., Khashan, A., Gilligan, O., Kenny, L., Donoghue, K. (2015). Gestation-specific D-dimer reference ranges: a cross-sectional study. BJOG: an International Journal of Obstetrics and Gynaecology, 122(3), 395-400. https://doi.org/10.1111/1471-0528.12855.
  • Hollywood, K., Winder, C., Dunn, W., Xu, Y., Broadhurst, D., Griffiths, C., Goodacre, R. (2015). Exploring the mode of action of dithranol therapy for psoriasis: A metabolomic analysis using HaCaTcells. Molecular Biosystems, 11(8), 2198-2209. https://doi.org/10.1039/c4mb00739e.
  • Balikcioglu, P., Balikcioglu, M., Muehlbauer, M., Purnell , J., Broadhurst, D., Freemark, M., Haqq, A. (2015). Macronutrient regulation of ghrelin and peptide YY in pediatric obesity and prader-willi syndrome. Journal of Clinical Endocrinology and Metabolism, 100(10), 3822-3831. https://doi.org/10.1210/jc.2015-2503.
  • Dunn, W., Lin, W., Broadhurst, D., Begley, P., Brown, M., Zelena, E., Vaughan, A., Halsall, A., Harding, N., Knowles, J., Francis-McIntyre, S., Tseng, A., Ellis, D., O'Hagan, S., Aarons, G., Benjamin , B., Chew-Graham, S., Moseley, C., Potter, P., Winder, C., Potts, C., Thornton, P., McWhirter, C., Zubair, M., Pan, M., Burns, A., Cruickshank, J., Jayson, G., Purandare, N., Wu, F., Finn, J., Haselden, J., Nicholls, A., Wilson, I., Goodacre, R., Kell, D. (2015). Molecular phenotyping of a UK population: defining the human serum metabolome. Metabolomics, 11(1), 9-26. https://doi.org/10.1007/s11306-014-0707-1.

Book Chapters

  • Pritchard, L., Broadhurst, D. (2014). On the statistics of identifying candidate pathogen effectors. Plant-Pathogen Interactions: Methods and Protocols (53-64). Springer. https://doi.org/10.1007/978-1-62703-986-4_4.

Journal Articles

  • Anderson, S., Dunn, W., Banerjee, M., Brown, M., Broadhurst, D., Goodacre, R., Cooper, G., Kell, D., Cruickshank, JK. (2014). Evidence that multiple defects in lipid regulation occur before hyperglycemia during the prodrome of type-2 diabetes.. PLoS One, 9(9), e103217. https://doi.org/10.1371/journal.pone.0103217.
  • Reinke, S., Broadhurst, D., Sykes , B., Baker, G., Catz, I., Warren, K., Power, C. (2014). Metabolomic profiling in multiple sclerosis: insights into biomarkers and pathogenesis. Multiple Sclerosis Journal, 20(10), 1396-1400. https://doi.org/10.1177/1352458513516528.
  • Walsh, J., Reinke, S., Mamik, M., McKenzie, B., Maingat, F., Branton, W., Broadhurst, D., Power, C. (2014). Rapid inflammasome activation in microglia contributes to brain disease in HIV/AIDS. Retrovirology, 11(2014), 35. https://doi.org/10.1186/1742-4690-11-35.
  • Kirwan , J., Weber, R., Broadhurst, D., Viant, M. (2014). Direct infusion mass spectrometry metabolomics dataset: A benchmark for data processing and quality control. Scientific Data, 1(10 June 2014), Article No.140012. https://doi.org/10.1038/sdata.2014.12.

Journal Articles

  • Xia, J., Broadhurst, D., Wilson, M., Wishart, D. (2013). Translational biomarker discovery in clinical metabolomics: An introductory tutorial. Metabolomics, 9(2), 280-299. https://doi.org/10.1007/s11306-012-0482-9.
  • Kirwan, J., Broadhurst, D., Davidson, R., Viant, M. (2013). Characterising and correcting batch variation in an automated direct infusion mass spectrometry (DIMS) metabolomics workflow. Analytical and Bioanalytical Chemistry, 405(15), 5147-5157. https://doi.org/10.1007/s00216-013-6856-7.
  • Reinke, S., Walsh, B., Boylan, G., Sykes, B., Kenny, L., Murray, D., Broadhurst, D. (2013). 1H NMR derived metabolomic profile of neonatal asphyxia in umbilical cord serum: Implications for hypoxic ischemic encephalopathy. Journal of Proteome Research, 12(9), 4230-4239. https://doi.org/10.1021/pr400617m.

Journal Articles

  • Reyes, L., Garcia, R., Ruiz, S., Broadhurst, D., Aroca, G., Davidge, S., Lopez-Jaramillo, P. (2012). Angiogenic imbalance and plasma lipid alterations in women with preeclampsia from a developing country. Growth Factors, 30(3), 158-166. https://doi.org/10.3109/08977194.2012.674035.
  • Walsh, B., Broadhurst, D., Rupasri, M., Wishart, D., Boylan, G., Kenny, L., Murray, D. (2012). The metabolomic profile of umbilical cord blood in neonatal hypoxic ischaemic encephalopathy. PLoS One, 7(12), Article No. e50520. https://doi.org/10.1371/journal.pone.0050520.
  • Egan, N., Bartels, A., Khashan, A., Broadhurst, D., Joyce, C., Mullane, J., Donoghue, K. (2012). Reference standard for serum bile acids in pregnancy. BJOG: an International Journal of Obstetrics and Gynaecology, 119(4), 493-498. https://doi.org/10.1111/j.1471-0528.2011.03245.x.
  • Dunn, W., Wilson, I., Nicholls, A., Broadhurst, D. (2012). The importance of experimental design and QC samples in large-scale and MS-driven untargeted metabolomic studies of humans. Bioanalysis, 4(18), 2249-2264. https://doi.org/10.4155/bio.12.204.
  • Bartels, A., Egan, N., Broadhurst, D., Khashan, A., Joyce, C., Stapleton, M., O'Mullane, J., O'Donoghue, K. (2012). Maternal serum cholesterol levels are elevated from the 1st trimester of pregnancy: A cross-sectional study. Journal of Obstetrics and Gynaecology, 32(8), 747-752. https://doi.org/10.3109/01443615.2012.714017.
  • Xia, J., Mandal, R., Sinelnikov, I., Broadhurst, D., Wishart, D. (2012). MetaboAnalyst 2.0-a comprehensive server for metabolomic data analysis. Nucleic Acids Research, 40(W1), W127-W133. https://doi.org/10.1093/nar/gks374.

Journal Articles

  • Dunn, WB., Broadhurst, D., Begley, P., Zelena, E., Francis-McIntyre, S., Anderson, N., Brown, M., Knowles, JD., Halsall, A., Haselden, JN., Nicholls, AW., Wilson, ID., Kell, DB., Goodacre, R. (2011). Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature Protocols, 6(7), 1060-1083. https://doi.org/10.1038/nprot.2011.335.
  • Horgan, R., Broadhurst, D., Walsh, S., Dunn, W., Brown, M., Roberts, C., North, R., McCowan, L., Kell, D., Baker, P., Kenny, L. (2011). Metabolic profiling uncovers a phenotypic signature of small for gestational age in early pregnancy. Journal of Proteome Research, 10(8), 3660-3673. https://doi.org/10.1021/pr2002897.
  • Dunn, W., Broadhurst, D., Atherton, H., Goodacre, R., Griffin, J. (2011). Systems level studies of mammalian metabolomes: The roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chemical Society Reviews, 40(1), 387-426. https://doi.org/10.1039/b906712b.

Research Projects

  • An exploratory study to determine if exercise can impact the gut microbiota composition of men receiving androgen suppression therapy for prostate cancer, Prostate Cancer Foundation of Australia, Grant, 2018 ‑ 2024, $98,875.
  • Metabolomics for Asthma Prediction 2 (MAP-2), Perth Children's Hospital, Grant, 2023 ‑ 2024, $243,343.
  • Securing health in Fiji through strengthened health systems and integrated water management to tackle the Three Plagues: typhoid, dengue and leptospirosis., National Health and Medical Research Council, DFAT - Stronger Systems For Health Security Call, 2018 ‑ 2024, $546,640.
  • Multi-centre, multi-disciplinary study using a systems biology approach to investigate immunomodulation in children with acute wheeze, National Health and Medical Research Council, Project Grants, 2018 ‑ 2022, $73,873.
  • High Throughput NMR Facility, Australian Research Council, Grant - Linkage (Infrastructure), 2019, $415,000.
  • Australian Metabolic Phenotyping Centre (AMPC), Australian Research Council, Grant - Linkage (Infrastructure), 2017 ‑ 2019, $33,130.
  • Investigating lipid synthesis pathways in genetically modified seeds, Edith Cowan University, Edith Cowan University, School of Science Early Career Grant Scheme Semester 1, 2017, 2017, $10,000.
  • Improving barley malting quality through a combined metabolomics and transcriptomics approach, Edith Cowan University, Edith Cowan University, School of Science Early Career Grant Scheme Semester 1, 2017, 2017, $10,000.

Research Student Supervision

Associate Supervisor

  • Doctor of Philosophy, Investigation of metabolite biomarkers for early, minimally invasive detection of polycystic kidney disease.

Principal Supervisor

  • Master of Science (Chemistry), Deriving statistical inference from the application of artificial neural networks to clinical metabolomics data

Co-principal Supervisor

  • Master of Science by Research, Comparison of Tissue Extraction Methods for Gas Chromatography-Mass Spectrometry-Based Metabolomics Analysis of Polycystic Kidney Tissue
  • Doctor of Philosophy, Metabolomic Profiles of Asthma Phenotypes: From Cross-Sectional Cohorts to Longitudinal Trajectories using Electronic Medical Records
Skip to top of page