Top of page

Student/Staff Portal
Global Site Navigation

School of Science

Local Section Navigation
You are here: Main Content

Professor David Suter

Professor of Computer Science

Staff Member Details
Telephone: +61 8 6304 6591
Email: d.suter@ecu.edu.au
Campus: Joondalup  
Room: JO18.417  
ORCID iD: https://orcid.org/0000-0001-6306-3023

David Suter is a Professor of Computer Science in the School of Science (Computing and Security).  He leads a team carrying out leading research in computer vision and big-data analysis. His special expertise includes robust statistical fitting, computational geometry and machine learning.

Background

  • (Research) Professor of Computer Science, Edith Cowan University, Jan 2018-
  • (Adjunct) Professor of Computer Science, The University of Adelaide, Dec 2017-
  • Professor of Computer Science, The University of Adelaide, 2008-2017
  • Professor of Electrical and Computer Systems Engineering, Monash University, 2006-2008
  • Associate Professor of Electrical and Computer Systems Engineering, Monash University, 2002-2006
  • Senior Lecturer (Electrical and Computer Systems Engineering), Monash University, 1992-2002
  • Lecturer (Computer Science and Computer Engineering), La Trobe University, 1988-1992

Awards and Recognition

National and International Research Positions

  • Member Australian Research Council College of Experts (2008-2011)
  • Editorial Board of “International Journal of Computer Vision” (2004-2013) (currently on the Honorary Editorial Board)
  • Editorial Board “Pattern Recognition” (Aug 2017 – present)
  • Editorial Board of “IPSJ Transactions on Computer Vision and Applications” (2008- 2013)
  • Editorial Board of “Journal of Mathematical Imaging and Vision” (2007-2010)
  • Editorial Board of “Machine Vision and Applications” (2006- 2008)

Research Areas and Interests

  • Computer Vision (Robot Vision)
  • Image Processing
  • Pattern Recognition
  • Big-Data Analysis
  • Robust Statistics
  • Computational Geometry

Qualifications

  • Doctor of Philosophy, La Trobe University, 1991.

Research Outputs

Journal Articles

  • Smith, C., Sim, M., Ilyas, Z., Gilani, Z., Suter, D., Reid, S., Monchka, B., Jozani, M., Figtree, G., Schousboe , J., Lewis, J., Leslie, W. (2025). Automated abdominal aortic calcification and major adverse cardiovascular events in people undergoing osteoporosis screening: the Manitoba Bone Mineral Density Registry. Journal of Bone and Mineral Research, 2025(Article in press), Article number zjae208. https://doi.org/10.1093/jbmr/zjae208.

Conference Publications

  • Zhang, X., Saleem, A., Ilyas, Z., Suter, D., Nadeem, MA., Prince, R., Zhu, K., Lewis, J., Sim, M., Gilani, Z. (2025). Predicting Falls through muscle weakness from a single whole body image: a multimodal contrastive learning framework. Applications of Medical Artificial Intelligence (10 pages). Springer. https://doi.org/-.

Journal Articles

  • Schousboe, J., Lewis, J., Monchka, B., Reid, S., Davidson, M., Kimelman, D., Jozani, M., Smith, C., Sim, M., Gilani, Z., Suter, D., Leslie, W. (2024). Simultaneous automated ascertainment of prevalent vertebral fracture and abdominal aortic calcification in clinical practice: role in fracture risk assessment. Journal of Bone and Mineral Research, 2024(Article in press), Article number zjae066. https://doi.org/10.1093/jbmr/zjae066.

Conference Publications

  • Keshtkaran, E., Von Berg, B., Regan, G., Suter, D., Gilani, Z. (2024). Estimating Blood Alcohol Level Through Facial Features for Driver Impairment Assessment. IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) (4539-4548). IEEE. https://doi.org/10.1109/WACV57701.2024.00448.
  • Abela, B., Masek, M., Abu-Khalaf, J., Suter, D., Gupta, A. (2024). An Exploration of Diabetic Foot Osteomyelitis X-ray Data for Deep Learning Applications. Artificial Intelligence in Medicine (30-39). Springer. https://doi.org/https://doi.org/10.1007/978-3-031-66535-6_4.
  • Gopinathan, K., Masek, M., Abu-Khalaf, J., Suter, D. (2024). Spatially-Aware Speaker for Vision Language Navigation Instruction Generation. Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (13601–13614). Association for Computational Linguistics. https://doi.org/10.18653/v1/2024.acl-long.734.
  • Chuah, W., Tennakoon, R., Hoseinnezhad, R., Suter, D., Bab-Hadiashar, A. (2024). Single Domain Generalization via Normalised Cross-correlation Based Convolutions. Proceedings - 2024 IEEE Winter Conference on Applications of Computer Vision, WACV 2024 (1741-1750). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/WACV57701.2024.00177.
  • Mirnateghi, N., Islam, S., Suter, D., Shah, A. (2024). Towards Explainability of Affordance Learning in Robot Vision. IEEE Digital Image Computing: Techniques & Applications (6). IEEE.

Reports

  • Seet, P., Klarin, A., Jones, J., Johnstone, M., Cripps, H., Sharafizad, J., Wilk, V., Suter, D., Marceddo, T. (2024). Opportunities and Challenges posed by Disruptive and Converging information technologies for Australia's future defence capabilities: A Horizon Scan. Joondalup. Edith Cowan University. https://doi.org/https://doi.org/10.25958/0x5j-wd23.

Journal Articles

  • Fayyazifar, N., Dwivedi, G., Suter, D., Ahderom, S., Maiorana, A., Clarkin, O., Balamane, S., Saha, N., King, B., Green, MS., Golian, M., Chow, BJ. (2023). A Novel Convolutional Neural Network Structure For Differential Diagnosis Of Wide Qrs Complex Tachycardia. Biomedical Signal Processing and Control, 81(2023), article number 104506. https://doi.org/10.1016/j.bspc.2022.104506.
  • Dalla Via, J., Gebre, A., Smith, C., Gilani, Z., Suter, D., Sharif, N., Szulc, P., Schousboe, J., Kiel, D., Zhu, K., Leslie, W., Prince, R., Lewis, J., Sim, M. (2023). Machine-Learning Assessed Abdominal Aortic Calcification is Associated with Long-Term Fall and Fracture Risk in Community-Dwelling Older Australian Women. Journal of Bone and Mineral Research, 2023(Article in press), 10 pages. https://doi.org/10.1002/jbmr.4921.
  • Muthu, S., Tennakoon, R., Rathnayake, T., Hoseinnezhad, R., Suter, D., Bab-Hadiashar, A. (2023). Generalized framework for image and video object segmentation using affinity learning and message passing GNNS. Computer Vision and Image Understanding, 236(TBD), article number 103812. https://doi.org/10.1016/j.cviu.2023.103812.
  • Chuah, W., Tennakoon, R., Hoseinnezhad, R., Suter, D., Hadiashar, A. (2023). An Information-Theoretic Method to Automatic Shortcut Avoidance and Domain Generalization for Dense Prediction Tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023(Article in Press), TBD. https://doi.org/10.1109/TPAMI.2023.3268640.
  • Sharif, N., Gilani, Z., Suter, D., Reid, S., Szulc, P., Kimelman, D., Monchka, B., Jozani, M., Hodgson, J., Sim, M., Zhu, K., Harvey, N., Kiel, D., Prince, R., Schousboe , J., Leslie, W., Lewis, J. (2023). Machine Learning for Abdominal Aortic Calcification Assessment from Bone Density Machine-Derived Lateral Spine Images. EBioMedicine, 94(August 2023), Article number 104676. https://doi.org/10.1016/j.ebiom.2023.104676.

Conference Publications

  • Saleem, A., Ilyas, Z., Suter, D., Hassan, GM., Reid, S., Schousboe, JT., Prince, R., Leslie, WD., Lewis, J., Gilani, Z. (2023). SCOL: Supervised Contrastive Ordinal Loss for Abdominal Aortic Calcification Scoring on Vertebral Fracture Assessment Scans. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (273-283). Springer. https://doi.org/10.1007/978-3-031-43987-2_27.
  • Khan, M., Abu-Khalaf, J., Suter, D., Rosenhahn, B. (2023). M3T: Multi-class multi-instance multi-view object tracking for embodied AI tasks. M3T: Multi-class multi-instance multi-view object tracking for embodied AI tasks (246-261). Springer, Cham. https://doi.org/10.1007/978-3-031-25825-1_18.

Journal Articles

  • Chuah, W., Tennakoon, R., Hoseinnezhad, R., Suter, D., Bab-Hadiashar, A. (2022). Semantic Guided Long Range Stereo Depth Estimation for Safer Autonomous Vehicle Applications. IEEE Transactions on Intelligent Transportation Systems, 23(10), 18916-18926. https://doi.org/10.1109/TITS.2022.3170870.
  • Truong, G., Le, H., Zhang, E., Suter, D., Gilani, Z. (2022). Unsupervised Learning for Maximum Consensus Robust Fitting: A Reinforcement Learning Approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022(article in press), 1-13. https://doi.org/10.1109/TPAMI.2022.3178442.

Conference Publications

  • Doan, A., Sasdelli, M., Suter, D., Chin, T. (2022). A Hybrid Quantum-Classical Algorithm for Robust Fitting. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (417-427). IEEE Computer Society. https://doi.org/10.1109/CVPR52688.2022.00051.
  • Zhang, E., Suter, D., Tennakoon, R., Chin, T., Bab-Hadiashar, A., Truong, H., Gilani, Z. (2022). Maximum Consensus by Weighted Influences of Monotone Boolean Functions. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (8954-8962). IEEE Computer Society. https://doi.org/10.1109/CVPR52688.2022.00876.
  • Gilani, Z., Sharif, N., Suter, D., Schousboe, JT., Reid, S., Leslie, WD., Lewis, J. (2022). Show, Attend and Detect: Towards Fine-Grained Assessment of Abdominal Aortic Calcification on Vertebral Fracture Assessment Scans. Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (439-450). Springer. https://doi.org/10.1007/978-3-031-16437-8_42.
  • Chuah, W., Tennakoon, R., Hoseinnezhad, R., Bab-Hadiashar, A., Suter, D. (2022). ITSA: An Information-Theoretic Approach to Automatic Shortcut Avoidance and Domain Generalization in Stereo Matching Networks. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (13012-13022). IEEE Computer Society. https://doi.org/10.1109/CVPR52688.2022.01268.

Journal Articles

  • Xiao, G., Wang, H., Ma, J., Suter, D. (2021). Segmentation by continuous latent semantic analysis for multi-structure model fitting. International Journal of Computer Vision, 129(7), 2034-2056. https://doi.org/10.1007/s11263-021-01468-6.
  • Tan, D., Gilani, Z., Boutrus, M., Alvares, G., Whitehouse, A., Mian, A., Suter, D., Maybery, M. (2021). Facial asymmetry in parents of children on the autism spectrum. Autism Research, 14(11), 2260-2269. https://doi.org/10.1002/aur.2612.
  • Le, H., Chin, T., Eriksson, A., Do, T., Suter, D. (2021). Deterministic Approximate Methods for Maximum Consensus Robust Fitting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(3), 842-857. https://doi.org/10.1109/TPAMI.2019.2939307.

Conference Publications

  • Tennakoon, R., Suter, D., Zhang, E., Chin, T., Bab-Hadiashar, A. (2021). Consensus Maximisation Using Influences of Monotone Boolean Functions. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2866-2875). IEEE. https://doi.org/10.1109/CVPR46437.2021.00289.
  • Truong, G., Le, H., Suter, D., Zhang, E., Gilani, Z. (2021). Unsupervised Learning for Robust Fitting: A Reinforcement Learning Approach. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (10348-10357). IEEE. https://doi.org/10.1109/CVPR46437.2021.01021.
  • Chin, T., Suter, D., Ch'ng, SF., Quach, J. (2021). Quantum robust fitting. Computer Vision - ACCV 2020. 15th Asian Conference on Computer Vision. (485-499). Springer International Publishing. https://doi.org/10.1007/978-3-030-69525-5_29.
  • Ilyas, Z., Sharif, N., Schousboe, J., Lewis, J., Suter, D., Gilani, Z. (2021). GuideNet: Learning Inter- Vertebral Guides in DXA Lateral Spine Images. DICTA 2021 - 2021 International Conference on Digital Image Computing: Techniques and Applications (p.1-7). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/DICTA52665.2021.9647067.

Journal Articles

  • Tan, DW., Maybery, MT., Gilani, Z., Alvares, G., Mian, A., Suter, D., Whitehouse, AJ. (2020). A broad autism phenotype expressed in facial morphology. Translational Psychiatry, 10(1), article number 7. https://doi.org/10.1038/s41398-020-0695-z.
  • Muthu, S., Tennakoon, R., Rathnayake, T., Hoseinnezhad, R., Suter, D., Bab-Hadiashar, A. (2020). Motion segmentation of RGB-D sequences: Combining semantic and motion information using statistical inference. IEEE Transactions on Image Processing, 29(2020), 5557-5570. https://doi.org/10.1109/TIP.2020.2984893.

Conference Publications

  • Fayyazifar, N., Ahderom, S., Suter, D., Maiorana, A., Dwivedi, G. (2020). Impact of Neural Architecture Design on Cardiac Abnormality Classification Using 12-lead ECG Signals. 2020 Computing in Cardiology (article number 9344384). IEEE Computer Society. https://doi.org/10.22489/CinC.2020.161.
  • Nguyen Duc Minh, C., Gilani, Z., Islam, S., Suter, D. (2020). Learning Affordance Segmentation: An Investigative Study. Proceedings of the Digital Image Computing: Technqiues and Applications (DICTA) (Article number 9363390). IEEE. https://doi.org/10.1109/DICTA51227.2020.9363390.
  • Chen, H., Suter, D., Wu, Q., Wang, H. (2020). End-to-End Learning of Object Motion Estimation from Retinal Events for Event-Based Object Tracking. Proceedings of the AAAI Conference on Artificial Intelligence (10534-10541). AAAI Press. https://doi.org/10.1609/aaai.v34i07.6625.

Journal Articles

  • Xiao, G., Wang, H., Yan, Y., Suter, D. (2019). Superpixel-Guided Two-View Deterministic Geometric Model Fitting. International Journal of Computer Vision, 127(4), 323–339. https://doi.org/10.1007/s11263-018-1100-8.
  • Wang, H., Xiao, G., Yan, Y., Suter, D. (2019). Searching for Representative Modes on Hypergraphs for Robust Geometric Model Fitting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(3), 697-711. https://doi.org/10.1109/TPAMI.2018.2803173.

Conference Publications

  • Lin, S., Xiao, G., Yan, Y., Suter, D., Wang, H. (2019). Hypergraph Optimization for Multi-structural Geometric Model Fitting. Proceedings of the AAAI Conference on Artificial Intelligence (8730-8737). Association for the Advancement of Artificial Intelligence. https://doi.org/10.1609/aaai.v33i01.33018730.
  • Truong, G., Gilani, Z., Islam, S., Suter, D. (2019). Fast Point Cloud Registration using Semantic Segmentation. Proceedings of 2019 Digital Image Computing: Techniques and Applications (DICTA) (Article number 8945870). IEEE. https://doi.org/10.1109/DICTA47822.2019.8945870.

Conference Publications

  • Cai, Z., Chin, T., Le, H., Suter, D. (2018). Deterministic Consensus Maximization with Biconvex Programming. Proceedings European Conference on Computer Vision (699-714). Springer. https://doi.org/10.1007/978-3-030-01258-8_42.
  • Le, H., Eriksson, A., Milford, M., Do, T., Chin, T., Suter, D. (2018). Non-smooth M-estimator for Maximum Consensus Estimation. 29th British Machine Vision Conference (BMVC) (1-12). British Machine Vision Conference. https://ro.ecu.edu.au/ecuworkspost2013/6724.

Books

Journal Articles

  • Purkait, P., Chin, T., Sadri, A., Suter, D. (2017). Clustering with Hypergraphs: The Case for Large Hyperedges. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(9), 1697-1711. https://doi.org/10.1109/TPAMI.2016.2614980.
  • Lai , T., Wang, H., Yan, Y., Xiao, G., Suter, D. (2017). Efficient guided hypothesis generation for multi-structure epipolar geometry estimation. Computer Vision and Image Understanding, 154(Jan), 152-165. https://doi.org/10.1016/j.cviu.2016.10.003.
  • Chin, T., Purkait, P., Eriksson, A., Suter, D. (2017). Efficient Globally Optimal Consensus Maximisation with Tree Search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(4), 758-772. https://doi.org/10.1109/TPAMI.2016.2631531.

Conference Publications

  • Zhang, Q., Chin, T., Suter, D. (2017). Quasiconvex Plane Sweep for Triangulation with Outliers. Proceedings of the IEEE International Conference on Computer Vision (920-928). IEEE. https://doi.org/10.1109/ICCV.2017.105.
  • Le, H., Chin, T., Suter, D. (2017). An Exact Penalty Method for Locally Convergent Maximum Consensus. Proceedings 30th IEEE Conference on Computer Vision and Pattern Recognition (378-387). IEEE. https://doi.org/10.1109/CVPR.2017.48.

Journal Articles

  • Xiao, G., Wang, H., Lai, T., Suter, D. (2016). Hypergraph modelling for geometric model fitting. Pattern Recognition, 60(2016), 748-760. https://doi.org/10.1016/j.patcog.2016.06.026.
  • Tennakoon, R., Bab-Hadiashar, A., Cao, Z., Hoseinnezhad, R., Suter, D. (2016). Robust Model Fitting Using Higher Than Minimal Subset Sampling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2), 350-362. https://doi.org/10.1109/TPAMI.2015.2448103.
  • Bustos, P., Chin, T., Eriksson, A., Li, H., Suter, D. (2016). Fast Rotation Search with Stereographic Projections for 3D Registration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(11), 2227-2240. https://doi.org/10.1109/TPAMI.2016.2517636.

Conference Publications

  • Xiao, G., Wang, H., Yan, Y., Suter, D. (2016). Superpixel-based two-view deterministic fitting for multiple-structure data. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (517-533). European Conference on Computer Vision. https://doi.org/10.1007/978-3-319-46466-4_31.
  • Le, H., Chin, T., Suter, D. (2016). Conformal Surface Alignment with Optimal Mobius Search. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2507-2516). IEEE. https://doi.org/10.1109/CVPR.2016.275.

Conference Publications

  • Wang, H., Xiao, G., Yan, Y., Suter, D. (2015). Mode-Seeking on Hypergraphs for Robust Geometric Model Fitting. https://doi.org/10.1109/ICCV.2015.332.
  • Hadian-Jazi, M., Bab-Hadiashar, A., Hoseinnezhad, R., Suter, D. (2015). Theoretical analysis of hough transform optimal cell size: Segmentation of nearby lines. https://doi.org/10.1109/IPTA.2015.7367119.
  • Chin, T., Purkait, P., Eriksson, A., Suter, D. (2015). Efficient globally optimal consensus maximisation with tree search. Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2413–2421). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/CVPR.2015.7298855.

Journal Articles

  • Tran, Q., Chin, T., Chojnacki, W., Suter, D. (2014). Sampling minimal subsets with large spans for robust estimation. International Journal of Computer Vision, 106(1), 93-112. https://doi.org/10.1007/s11263-013-0643-y.
  • Pham, TT., Chin, T., Schindler, K., Suter, D. (2014). Interacting geometric priors for robust multimodel fitting. IEEE Transactions on Image Processing, 23(10), 4601-4610. https://doi.org/10.1109/TIP.2014.2346025.
  • Pham, TT., Chin, T., Yu, J., Suter, D. (2014). The random cluster model for robust geometric fitting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(8), 1658-1671. https://doi.org/10.1109/TPAMI.2013.2296310.
  • Yu, J., Eriksson, A., Chin, T., Suter, D. (2014). An adversarial optimization approach to efficient outlier removal. Journal of Mathematical Imaging and Vision, 48(3), 451-466. https://doi.org/10.1007/s10851-013-0418-7.
  • Zaragoza, J., Chin, T., Tran, Q., Brown, MS., Suter, D. (2014). As-projective-as-possible image stitching with moving DLT. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(7), 1285-1298. https://doi.org/10.1109/TPAMI.2013.247.
  • Yan, Y., Wang, H., Suter, D. (2014). Multi-subregion based correlation filter bank for robust face recognition. Pattern Recognition, 47(11), 3487-3501. https://doi.org/10.1016/j.patcog.2014.05.004.

Conference Publications

Research Projects

  • Collaboration on abdominal aortic calcification study - KURE Korean AAC Study, Yonsei University, Grant, 2024 ‑ 2027, $15,107.
  • HyperGraph Classes, Robust Fitting and Clustering, Australian Research Council, Discovery Projects (DP25), 2025 ‑ 2027, $642,308.
  • Investigating genetic and lifestyle determinants of abdominal aortic calcification, and their relationship with cardiovascular disease, National Health and Medical Research Council, MRFF - Cardiovascular Health Mission, 2023 ‑ 2026, $1,202,213.
  • 2020-106-054 - Opportunities and Challenges posed by Disruptive and Converging information technologies for Australia’s future defence capabilities: A Horizon Scan. , Department of Defence, Strategic Policy Grants Program, 2020 ‑ 2024, $89,045.
  • Development of a Risk Based Framework for Governance of Autonomous Weapons Systems, Department of Jobs, Tourism, Science and Innovation, Defence Science Research Higher Degree Student Grant, 2023 ‑ 2024, $15,000.
  • Better and faster than the human eye: artificial intelligence and computational radiomics for foot x-rays in patients with diabetes-related foot infections, Department of Health WA, Research Translation Projects, 2022 ‑ 2024, $93,265.
  • Explainable AI Frameworks for Automatic Detection and Localisation of Abdominal Aortic Calcification, Raine Medical Research Foundation, Raine Priming Grants, 2023 ‑ 2024, $255,913.
  • Automated methods for evaluating structural vascular disease, National Health and Medical Research Council, Ideas Grants, 2020 ‑ 2024, $652,128.
  • Tensor and Hypergraph Methods in Fitting Visual Data, Australian Research Council, Grant - Discovery Projects, 2020 ‑ 2024, $485,266.
  • Generative Artificial Intelligence for Feature-Specific Augmentation of Radiological Image Datasets, Department of Health WA, Future Health Research and Innovation Fund - Generative AI Applications, 2024, $49,964.
  • Predicting falls in the elderly: A novel machine learning approach., Edith Cowan University, Australia-Germany JRC Scheme (UA-DAAD), 2021 ‑ 2024, $24,250.
  • Developing a Framework for Speech Recognition and understanding in digital learning contexts, Science and Industry Endowment Fund, SIEF - Ross Metcalf Stem Business Fellowship, 2020 ‑ 2023, $322,771.
  • Developing a novel deep learning architecture for automatic cardiac arrhythmia detection and classification, Department of Jobs, Tourism, Science and Innovation, WA Science Industry PhD Fellowship Program, 2019 ‑ 2022, $30,000.
  • ECU-Institute Technico Lisboa Collaboration in Artificial Intelligence, Edith Cowan University, ECU Collaboration Enhancement Scheme - 2018 Round 1, 2018 ‑ 2019, $7,672.

Research Student Supervision

Co-principal Supervisor

  • Doctor of Philosophy, Adaptive Algorithm for Interpreting Cognitive and Physiological Impairment from Multimodal Data
  • Doctor of Philosophy, Towards embodied navigation through vision and language

Associate Supervisor

  • Doctor of Philosophy, Embodied AI for challenging rearrangement tasks in the context of service and assistive robots
  • Doctor of Philosophy, Deep learning for medical image interpretation
  • Doctor of Philosophy, Towards AI Explainability: Unraveling Black-Box Models
  • Doctor of Philosophy, Automated Methods for Estimating Blood Alcohol Concentration Level from Facial Cues
  • Doctor of Philosophy, Development of a risk based framework for governance of autonomous weapons systems
  • Doctor of Philosophy, Machine Learning for Computer-Aided Diagnostics from Complex Medical Images

Principal Supervisor

  • Master of Science (Computer Science), Affordance Learning for Visual-Semantic Perception
  • Doctor of Philosophy: Robust Paramater Estimation in Computer Vision: Geometric Fitting and Deformable Registration
  • Doctor of Philosophy, Robust fitting: assisted by semantic analysis and reinforcement learning
  • Doctor of Philosophy, Deep Learning and Neural Architecture Search for Cardiac Arrhythmias Classification

Associate Supervisor

  • Doctor of Philosophy, Artificial intelligence-assisted prediction, feature, selection, and multi-omics integration in exploing the interaction between IgG N-glycome and transcriptome and constructing the ageing clock
Skip to top of page